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Flow cytometry-based viability staining: 
an at-line tool for bioprocess monitoring 
of Sulfolobus acidocaldarius
Kerstin Rastädter1, Andrea Tramontano2, David J. Wurm3, Oliver Spadiut1 and Julian Quehenberger1*   

Abstract 

Determination of the viability, ratio of dead and live cell populations, of Sulfolobus acidocaldarius is still being done by 
tedious and material-intensive plating assays that can only provide time-lagged results. Although S. acidocaldarius, an 
extremophilic Archaeon thriving at 75 °C and pH 3.0, and related species harbor great potential for the exploitation 
as production hosts and biocatalysts in biotechnological applications, no industrial processes have been established 
yet. One hindrance is that during development and scaling of industrial bioprocesses timely monitoring of the impact 
of process parameters on the cultivated organism is crucial—a task that cannot be fulfilled by traditional plating 
assays. As alternative, flow cytometry (FCM) promises a fast and reliable method for viability assessment via the use of 
fluorescent dyes. In this study, commercially available fluorescent dyes applicable in S. acidocaldarius were identified. 
The dyes, fluorescein diacetate and concanavalin A conjugated with rhodamine, were discovered to be suitable for 
viability determination via FCM. For showing the applicability of the developed at-line tool for bioprocess monitoring, 
a chemostat cultivation on a defined growth medium at 75 °C, pH 3.0 was conducted. Over the timeframe of 800 h, 
this developed FCM method was compared to the plating assay by monitoring the change in viability upon con-
trolled pH shifts. Both methods detected an impact on the viability at pH values of 2.0 and 1.5 when compared to pH 
3.0. A logarithmic relationship between the viability observed via plating assay and via FCM was observed.

Key points 

• Development of a flow cytometry (FCM) method for viability determination of S. acidocaldarius using the fluo-
rescent dyes fluorescein diacetate and concanavalin A conjugated with rhodamine.

• Applicability of the developed method was shown via viability monitoring during a continuous cultivation with 
triggered pH shifts.

• A logarithmic trend was observed between the developed FCM method and the state-of-the-art method, plating 
assay.
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Introduction
Flow cytometry (FCM) has shown to be a powerful tech-
nique for analyzing a broad spectrum of cell parameters 
on a single cell level (Díaz et al. 2010; Adan et al. 2017; 
Maciorowski et  al. 2017; Robinson 2018). It has been 
used for decades for the characterization of organisms 
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from all domains of life (Scheper et  al. 1987; Forment 
et  al. 2012; Vees et  al. 2020) and most applications of 
FCM are based upon fluorescence labelling. An impor-
tant application of FCM in biotechnology is the deter-
mination of live and dead cells in a cultivation which is 
a key parameter for bioprocess development and control 
(Rieseberg et  al. 2001). Successful applications of FCM 
have been published for the well-known mesophilic 
industrial production host Escherichia coli (Wurm et al. 
2017; Kopp et al. 2020) and for Pichia pastoris (Hohen-
blum et  al. 2003), highlighting how bioprocess develop-
ment can benefit from FCM-based viability monitoring. 
These studies showed that measuring the ratio of dead 
cells to the total cell count can be used for monitoring the 
effect of process parameters (Wurm et al. 2017) and on 
the other hand the effect of different cultivation strate-
gies (Hohenblum et al. 2003; Kopp et al. 2020) on process 
performance.

In recent years, growing interest in more exotic bio-
technological production hosts can be observed. Mem-
bers of the order Sulfolobales have been proposed as 
potential key organisms for future bioprocesses, har-
boring unique metabolic pathways and many valuable 
products such as extremozymes, highly stable lipids 
in their cell membrane as well as antibiotic complexes 
(Quehenberger et al. 2017; Rastädter et al. 2020). Sulfolo-
bus acidocaldarius has emerged as an important model 
organism for the phylum Crenarchaeota due to its stable 
and fully sequenced genome (Chen et  al. 2005) and its 
well-developed toolbox for genetic engineering (Wagner 
et al. 2012; Peng et al. 2017). It was only recently consid-
ered as an organism of high potential in biotechnologi-
cal applications (Zeldes et  al. 2015; Quehenberger et  al. 
2017; Schocke et  al. 2019). Hence, physiological strain 
characterization is only in its beginnings (Rastädter et al. 
2021) and no at-line methods for viability determina-
tion for fast identification of critical process parameters 
exist for S. acidocaldarius. Although, in the literature 
a number of fluorescence based, culture-independent 
detection methods for Sulfolobales species can be found 
(Brock et al. 1972; Bernander and Poplawski 1997; Hjort 
and Bernander 1999; Bernander 2007; Han et  al. 2017), 
these methods do not assess the cell viability. Therefore, 
the current state-of-the-art method for determining the 
viability of a population is still via plating assay (Lind-
ström and Sehlin 1989; Han et al. 2017). The outcome is 
time-delayed and depends on various factors for accurate 
results, such as correct dilution of cell suspension prior 
to plating, correct counting as well as subjective defini-
tion of a colony.

Generally, a cell is determined viable if it is capable of 
reproduction. While this property is directly assessed 
by plating assays that yield colony forming units (CFUs) 

as a response, for fast at-line estimation of viability it is 
necessary to find proxies that can be determined inde-
pendently of time-consuming incubation periods. Since 
metabolic activity is required for cell division, measuring 
the activity of representative housekeeping enzymes, like 
esterases, can be used as an indirect, though at-line way 
for determining the viability (Nyström 2001; Cangelosi 
and Meschke 2014). Following this principle, FCM analy-
sis combined with fluorescent dyes, such as fluorescein 
diacetate (FDA) (Xiao et al. 2011), can evaluate the cell’s 
metabolic activity, thereby allowing the estimation of the 
viability of a microbial population on a cellular level.

This study aims to develop an at-line method for bio-
process monitoring of the viability of S. acidocaldarius by 
using FCM in combination with suitable fluorescent dyes 
as a tool for efficient bioprocess monitoring. This method 
is then compared to the state-of-the-art method, plating 
assay, during a continuous bioreactor cultivation with 
triggered changes in viability via shifts in the pH value.

Material and methods
Fluorescence microscopy
A Leica DMI 8 fluorescence microscope (Leica Microsys-
tems, Germany) equipped with a mercury light source 
was used for screening of fluorescence dyes. Three filter 
configurations were available: Filter 1, excitation (ex.) 
532–558  nm/emission (em.) 570–640  nm); Filter 2, ex. 
450–490 nm / em. 500–550 nm; Filter 3, ex. 600–660 nm 
/ em. 662–738  nm. Undiluted cell suspensions were 
applied on glass slides and after addition of fluorescent 
dyes samples were incubated in the dark over a range of 
5–50 min before investigation with the microscope.

Screening of fluorescent dyes
Eight different fluorescent dyes were investigated regard-
ing their suitability for cell staining of S. acidocaldarius 
(Table 1).

Strain and bioreactor setup
Sulfolobus acidocaldarius DSM 639, obtained at Ger-
man Collection of Microorganisms and Cell Cultures 
(DSMZ, Germany), was grown continuously in a 2 L Bio-
stat A-plus bioreactor (Sartorius, Germany). The culture 
was stirred at 350 rpm, supplied with 0.23 vvm (0.45 L/h) 
pressurized air and kept at a constant temperature of 
75 °C. The pH was measured with an Easyferm Plus Elec-
trode (Hamilton, USA) and the dissolved oxygen  (dO2) 
was monitored by a VisiFerm DO225 probe (Hamilton, 
USA). pH was adjusted by automatic addition of 4.8% 
(v/v)  H2SO4.  CO2 and  O2 concentrations in the exhaust 
gas were measured using a gas analyzing unit (Müller 
Systems AG, Switzerland). The cultivation was moni-
tored and controlled using the Lucullus process control 
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system (SecureCell, Switzerland). The batch phase was 
started with an initial  OD600 of 0.275 in 1.5 L of Vienna 
Defined (VD) Medium (Quehenberger et  al. 2019) with 
modified concentrations of carbon sources (2 g/L mono-
sodium glutamate (MSG), 1  g/L d-glucose). During the 
fed-batch phase an exponential feed was applied, starting 
with 14.8 g/h and a growth rate of 0.035  h−1. After reach-
ing 2  L working volume a dilution rate of 0.03   h−1 was 
established and the chemostat phase was started. Feed 
used during fed-batch and chemostat phases contained a 
5-times concentrated VD Medium with modified carbon 
source concentrations (9.5  g/L MSG, 4.5  g/L d-glucose 
and 0.5  g/L NZ-amine (Sigma, USA, a protein hydro-
lysate containing all 20 amino acids). For maintaining a 
constant volume during chemostat cultivation, cell broth 
was pumped out of the reactor via a bleed tube at a fixed 
height.

Biomass for the following viability experiments was 
harvested during the chemostat phase. To trigger changes 
in viability, the pH was changed from the standard value 
of 3.0 to 2.0 and 1.5, respectively.

Biomass determination
Optical density  (OD600) was determined via a spectro-
photometer (ONDA V-10 PLUS, XS instruments, Italy) 
at 600 nm against a blank of deionized water.

Plating assay: viability determination
Since plating is the state-of-the-art method for viability 
determination with S. acidocaldarius (Lindström and 
Sehlin 1989; Han et  al. 2017), this method was used as 
benchmark in the present study. The generated response 
of the plating method are CFUs, consequently this 
method assesses the capability of replication. 400  mL 
1.2% gelrite and 400 mL 2× concentrated brock medium 
(Brock et  al. 1972; Quehenberger et  al. 2019) supple-
mented with 0.4 g  CaCl2 and 0.76 g  MgCl2 were prepared 
aseptically. Glucose with a final concentration of 2  g/L 
and 1  g/L g NZ-Amine served as the carbon sources. 
After their preparation the two solutions were mixed and 
the pH was set to 3.0 with 4.8%  H2SO4 prior to pouring á 
20  mL into 94 × 16  mm petri dishes (Greiner Bio-One, 
Austria). Depending on the  OD600 and on the expected 
CFUs the cell broth after sampling was diluted  10–4 to 
5·10–6 with VD Medium without carbon sources. 50 µL 
of this suspension was pipetted onto the plate and dis-
persed. After 6 days at 75 °C incubation, the CFUs were 
determined. Each sampling point was plated in four rep-
licates. The specific viability,  Vplating [CFU/ml/OD600], 
was calculated as follows: Vplating =

CFU ∗ dilution factor
OD600∗Volumeplated

.

Flow cytometry: viability determination
At each sampling point, 300  µL of cell broth were cen-
trifuged in a 2 mL Eppendorf tube at 10,000×g, 4 °C and 
for 10 min. The cell pellet was washed twice and resus-
pended with 0.2 µm-filtered 10 mM phosphate buffered 

Table 1 Overview of the investigated fluorescent dyes

Acridine orange (AO) was obtained from Carl Roth (Germany). SYTO™ 9 and 7-Aminoactinomycin D (7-AAD) were purchased from Thermo Fisher Scientific (USA). 
RH414 [N-(3-Triethylammoniumpropyl)-4-(4-(4-(diethylamino)phenyl)butadienyl) pyridinium dibromide] as well as  DiBAC4(3) [Bis- (1,3-dibutylbarbituric acid) 
trimethine oxonol] were obtained from AnaSpec (USA). Concanvalin A—rhodamine was supplied by Vector Laboratories (USA) while fluorescein diacetate (FDA) and 
propidium iodide (PI) was purchased from Sigma Aldrich (USA)
1 Ex λmax: maximum excitation wavelength
2 Em λmax: maximum emission wavelength

*here permeability describes the capability of a dye to enter intact (uncompromised) cells

Dye Ex. λmax
1 [nm] Em. λmax

2 [nm] Fluorescence 
color

Permeability* Mode of interaction For detection of

Acridine orange (AO) 500 526 green permeable DNA/RNA viable and non-viable cells

SYTO™ 9 485 500 green permeable DNA/RNA viable and non-viable cells

RH414 532 716 red permeable cell membrane viable and non-viable cells

Concanavalin A-rhoda-
mine

545 570 red impermeable cell membrane viable and non-viable cells

Fluorescein diacetate 
(FDA)

485 520 green permeable enzymatic fluorophore 
generation

viable cells

DiBAC4(3) 493 516 green impermeable positively charged or 
hydrophobic regions

non-viable cells

Propidium iodide (PI) 535 617 red impermeable DNA/RNA non-viable cells

7-AAD 546 647 red impermeable DNA, G-C rich regions, 
RNA

non-viable cells
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saline (PBS), pH 5.5. In between the washing steps, a 
five-minute centrifugation step at 20,000×g and 4  °C 
was carried out. Then, 600 µL of PBS buffer were added 
to the 300 µL washed cell suspension to yield a 1:3 dilu-
tion. 4.5 µL fluorescein diacetate (FDA, 5 g/L in acetone, 
Sigma- Aldrich, USA) were added to the obtained 900 µL. 
The sample was then incubated for 10 min at 37 °C in a 
thermoblock. After incubation, another centrifugation 
step at 20,000×g, 4 °C and for 5 min occurred to reduce 
background fluorescence caused by released fluorescein 
in the supernatant. The cell pellet was resuspended in 
900 µL PBS buffer.

After FDA staining, the sample was diluted 1:3000 with 
PBS buffer to a final OD of 0.002 to 0.003. 50 µL conca-
navalin A (ConA)-rhodamine (5  g/L, Vector Laborato-
ries, USA) were centrifuged prior to use to remove any 
possible protein aggregates which may form during stor-
age. Shortly before measuring, 1 µL of ConA-rhodamine 
was added to 1  mL diluted FDA-stained cell suspen-
sion. The measurement was performed using a Cyflow 
Cube 8 flow cytometer (Sysmex, Germany), equipped 
with a 488  nm blue and 532  nm green laser. Emission 
spectra were obtained with fluorescence channels FL1, 
536/40 nm bandpass, and FL4, 610/30 nm bandpass fil-
ter. Additionally, a forward scatter (FSC) and side scatter 
(SSC) detection was available. As all cells are stained by 
ConA-rhodamine, the emission spectra were acquired 
by using the FL4 as a trigger parameter. Opensource 
software FCSalyzer (Mostböck) was used for data visu-
alization. The viability identified via the FCM was termed 
 VFCM and was determined as follows: VFCM =

viable cells

all cells
.

To obtain non-viable cells, the cells were killed via suf-
focation at high temperature. This was done by pour-
ing 1  mL of cell suspension in a 2  mL Eppendorf tube 
which was then sealed with parafilm. The tube was put 
in a 100 mL Erlenmeyer flask filled with water and closed 
off with aluminum foil. The flask was transferred to a 
75 °C-oil bath and was incubated over night while shak-
ing. By doing this procedure, the remaining oxygen in 
the cell suspension is consumed resulting in depletion 
of ATP. Eventually, this leads to acidification of the cyto-
solic pH, which can no longer be maintained at the physi-
ological value of 6.5 due to inactivity of proton pumps 
and simultaneous influx of  H+ ions form the surround-
ing medium. The respective non-viable cell suspension 
sample was then treated like mentioned above. For cali-
bration purposes and to determine the sensitivity of the 
method, the non-viable and viable samples after FDA 
staining were mixed in the respective ratios.

Results
Method development
Screening of fluorescence dyes
Compared to mammalian cells and Bacteria, for Archaea 
only a limited number of fluorescent dyes are commer-
cially available (Johnson and Spence 2010). Neverthe-
less, SYTO 9 and acridine orange (AO) have already been 
tested for the use in Archaea and have been reported 
to successfully stain Sulfolobus cells (Brock et  al. 1972; 
Leuko et al. 2004) and detect dead/all cells in haloarchaea 
(Leuko et al. 2004). In this study, 8 fluorescent dyes, listed 
in Table  1, were tested regarding their applicability for 
viability determination of S. acidocaldarius. Only 5 of 
the 8 investigated dyes led to fluorescent cells under the 
fluorescence microscope: AO, FDA, SYTO 9, ConA-rho-
damine and propidium iodide. Since the viability deter-
mination of a population via the fluorescence microscope 
is time consuming and highly operator dependent, and 
hence would defeat the purpose of finding an at-line 
monitoring tool, a fluorescence microscope-based viabil-
ity assay was not pursued within this study. Instead, an 
FCM-based approach was chosen as this method gener-
ates results within minutes after the sample is prepared.

Cell staining with FCM
FCM is described as a reproducible method for acquir-
ing optical and fluorescence information of cultures 
on a single cell level (Rieseberg et al. 2001; Díaz et al. 
2010). Generally, to determine viability of a cell culture 
via FCM, at least one fluorescent stain that highlights 
a specific characteristic such as viable or non-viable 
is needed. Cells can either be distinguished from the 
background noise due to size in the forward scatter or 
by using an additional fluorescent dye that specifically 
stains all cells. By combining these characteristics, two 
populations can be identified. Out of the five dyes that 
stained cells in the fluorescence microscope, only AO, 
FDA and ConA-rhodamine also showed a fluorescent 
signal when investigated with the flow cytometer. AO 
permeates cells regardless of their membrane integrity 
and subsequently leads to fluorescence emission when 
bound to intracellular nucleic acid (Martens-Habbena 
and Sass 2006). FDA staining is based on development 
of fluorescence upon cleavage of the FDA molecule 
by cellular esterases. The produced fluorescein accu-
mulates inside the cell, resulting in green fluorescence 
when excited. Consequently, compromised cells with a 
reduced amount of esterase activity exhibit a reduced 
fluorescence signal compared to healthy cells (Jones 
and Senft 1985). Although, complementary staining 
properties are given in case of AO (stains all cells) 
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and FDA (only living cells) it is not feasible to use the 
two dyes simultaneously in a single assay, since both 
dyes have similar emissions maxima (526 vs. 520 nm) 
and consequently, due to spectral overlap their signals 
cannot be discriminated. ConA-rhodamine was used 
instead, which binds to α-linked mannose present in 
the core oligosaccharides in the membrane glycopro-
teins (Fontaniella et al. 2004). In Sulfolobales mannose 
is present in the glycoslylated S-layer protein SlaA 
and flagellin FlaB (Elferink et  al. 2001; Peyfoon et  al. 
2010; Zolghadr et  al. 2010; Meyer et  al. 2011). ConA 
conjugated with rhodamine (stains all cells), which 
has an emissions maximum of 575 nm, can be used in 
combination with FDA. Hence, the rhodamine emis-
sion in FL4 (610/30 nm bandpass) determined all cells, 
while the fluorescence signal originating from FDA 
hydrolysis in FL1 (236/40 nm bandpass) identified the 
viable cells. Fluorescence microscope images, showing 
cells stained with FDA and ConA-rhodamine and an 
overlay of both figures can be seen in the Additional 
file  1. Thereby it is shown that all cells exhibit red 
fluorescence resulting from ConA-rhodamine (Addi-
tional file  1: Figure S1B). However, viable cells addi-
tionally exhibit green fluorescent from FDA staining 

(Additional file 1: Figure S1A, C). In this paper, for bet-
ter readability metabolic inactive/active cells accord-
ing to the FCM are described as non-viable/viable.

Determination of viability via FCM (VFCM)
By setting the trigger parameter to FL4, only parti-
cles that are ConA-rhondamine stained were recorded, 
thereby reducing particle events. While PBS buffer 
spiked with ConA-rhodamine still generated background 
noise, caused by unspecific fluorescence and aggregates 
(Fig. 1A), the cell population (gated in Fig. 1B) could be 
clearly distinguished from this background via the FSC 
and SSC plot due to the cell size and form. The cell gate 
was then used for determining the viability in FL1 (show-
ing FDA stained cells) versus FL4 plot (Fig. 1C). On the 
left side with low FL1 intensity the non-viable cells can be 
seen and on the right side the viable cells.

Sensitivity analysis and comparison with state‑of‑the‑art
Cells were killed by  O2 depletion and then mixed with 
viable cells in certain ratios. Since the sample of viable 
cells already contained around 7% non-viable cells, the 
amount was subtracted from the calculated percent-
age of live cells based on the mixed ratios. The trend 

Fig. 1 Gate definition for viability evaluation of Sulfolobus acidocaldarius. A density plot of side scatter versus forward scatter for ConA-rhodamine 
in PBS buffer, showing the background, color code: red-high to purple-low; B density plot of side scatter versus forward scatter for cells stained with 
FDA and ConA-rhodamine, showing the cell gate; C density plot of FL1 (536/40 nm bandpass) versus FL4 (610/30 nm bandpass) of cells gated in B; 
D statistics of FL1 vs. FL4 shown in C 
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between measured viable cells and calculated viable 
cells (according to the mixed ratios) in the measured 
populations shows a linear correlation between the 
determined viability  (VFCM) and the percentage of 
calculated viable cells in a sample over the range of 
2.5–92.7% (Fig.  2A). For comparison with the state-
of-the-art method plating  (VFCM vs.  Vplating), the same 
mixtures of viable and non-viable cells were also culti-
vated on gelrite plates and the CFUs were determined 
6 days later. The relationship between the CFUs of the 
plated viable/non-viable mixtures and the  VFCM shows 
a logarithmic trend (Fig. 2B).

Applicability test of FCM method
For showing the applicability of the developed FCM 
method, continuously cultivated cells were subjected to 
stress induced by pH changes. The viability was moni-
tored by FCM  (VFCM) and plating  (Vplating) through-
out these pH changes.  VFCM and  Vplating decreased in 
response to the shift towards more acidic conditions 
(Fig. 3). This effect was less prominent after the pH value 
was changed from the pH optimum of 3.0 (Rastädter 
et  al. 2021) to 2.0 and more severe when a pH value of 
1.5 was applied. After shifting back to the pH optimum of 
3.0, the cells recovered in both cases and  VFCM and  Vplating 
resumed the same values as before the pH shift. The rela-
tion between  VFCM and  VCFU is shown in Fig. 4. Similar 
to the relationship in the sensitivity analysis where cells 
were killed via oxygen depletion (Fig.  2B) also here a 
logarithmic relationship was observed as the pH shifts 
apparently impacted  Vplating more severely than  VFCM.

Discussion
FCM methods applied to other organism have shown to 
be a robust tool for getting an insight into the viability 
of a cell population (Xiao et al. 2006; Wurm et al. 2017; 
Vees et al. 2020). Additionally, it could be shown that the 
impact of process parameters such as feeding strategy 
(Xiao et  al. 2006; Vees et  al. 2020) and cultivation tem-
perature (Wurm et al. 2017) can be monitored.

Despite significant background signals for all cells dur-
ing ConA-rhodamine staining (Fig. 1A), a clear differen-
tiation between the background and cells can be made 
when gating based on forward/side scatter, thereby add-
ing information on characteristic shape/size of the cells 
(Fig.  1B). The resulting trend in the sensitivity analysis 
(Fig. 2A) showed a linear range between 2.45 and 92.72% 
of  VFCM. A logarithmic correlation between state-of-the-
art method plating assay and the developed FCM method 
was observed (Fig.  2B). A possible explanation for the 
logarithmic nature of the correlation could be that these 
methods investigate viability differently. Plating on gel-
rite plates [CFU/mL/OD600] and FDA/ConA-rhodamine 
staining combined with flow cytometry are based on dif-
ferent mechanisms to determine cell viability. With one 
method, the number of proliferable cells upon trans-
fer to a different growth environment (gelrite plates) is 
obtained, while the other method examines the metabolic 
activity of each cell as an at-line measurement (Cangelosi 
and Meschke 2014). Apparently, cells harvested during 
the shift to pH 2.0 were already significantly impaired 
in their ability to form colonies in the gelrite plate assay. 
This circumstance was neither mirrored in the limited 
drop of  OD600 nor in the moderate reduction of  VFCM 
during this shift to pH 2.0, while all three parameters 

Fig. 2 A Sensitivity analysis of viability according to mixed ratios [%] 
vs.  VFCM [%]. Viability according to mixed ratios [%] were obtained 
by mixing different ratios of non-viable and viable cell populations. 
 VFCM cells [%] were measured by the flow cytometer and evaluated 
according to Fig. 1. B Comparison of state-of-the-art method 
 log[Vplating (CFU/mL/OD600)] versus  VFCM [%]
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 (Vplating,  VFCM,  OD600) dropped significantly when the pH 
was reduced even further to a value of 1.5.

Although it is the current standard method for viabil-
ity determination (Lindström and Sehlin 1989; Han et al. 
2017), the plating assay applied in this paper harbors 
limitations that can explain possible divergence in the 
viability when compared to  VFCM. First, cells could retain 
metabolic activity while being unable to divide (Rollins 
and Colwell 1986; Nyström 2001; Cangelosi and Meschke 

2014). The inability of proliferation despite metabolic 
activity could explain the drastic changes in  Vplating upon 
pH value changes while the  VFCM of the culture only 
moderately decreased (Fig.  3). This is also mirrored in 
the logarithmic relationship between  VFCM and  Vplating 
(Figs. 2B and 4). Suffocation (Fig. 2B) as well as a pH drop 
(Fig. 4) lead to a decrease of cytosolic pH as a result of too 
low proton pump activity (Anemüller et al. 1985; Gleiss-
ner et al. 1997; Baker-Austin and Dopson 2007). Due to 
the cytosolic pH decrease, adaption to this new condition 
is necessary and apparently at the beginning of this pro-
cess the cells are metabolically active, but reproduction is 
stalled (Fig. 3). Secondly, in the plating assay the standard 
medium pH value is 3.0 (Wagner et al. 2012; Bischof et al. 
2019). However, the pH value of the preceding cultiva-
tion conditions might differ from this pH optimum of 3.0. 
Hence, the cells have to overcome another pH adaption 
in order to grow, which could cause the lower viability in 
comparison to  VFCM.

The time-delay for obtaining the results after sampling 
is still the biggest limitation, making plating assay-based 
bioprocess monitoring unfeasible. Additionally, wrong 
dilutions of the cell suspension prior to plating could lead 
either to too many colonies or too little to count, which 
both causes inaccurate results—a fatal error that cannot 
be corrected, since the actual sampling time already lies 
at least 6  days in the past. Incorrect dilutions during a 
FCM measurement can easily be detected and a re-run 
of the sample is possible immediately. In the evaluation 
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process of plating, the timing for counting the colonies 
on the plate is of essence. If it is done too late two col-
onies can merge and appear as one, on the other hand 
small colonies can be overlooked in an early evaluation.

The collective disadvantages of plating show the need 
for a robust and at-line FCM method with high statistical 
significance due to high sample size and high event num-
bers to determine the viability in a cell population. The 
developed FCM method harbors many applications in 
the rising field of S. acidocaldarius bioprocessing. It can 
be used to determine which process parameters such as 
stirrer speed or aeration rate are critical and that within 
less than 1  h after sampling, compared to 6  days that 
are necessary to yield a result in form of visible colonies 
when applying a plating assay. Further, identifying stress 
parameters in the upscaling to an industrial process is 
facilitated. Thereby, this FCM method for bioprocess 
monitoring harbors the potential to pave the way for the 
first industrial process with S. acidocaldarius or related 
Crenarchaeota.
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