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ABSTRACT Unlike all other archaeal lineages, ammonia-oxidizing archaea (AOA) of
the phylum Thaumarchaeota are widespread and abundant in all moderate and oxic
environments on Earth. The evolutionary adaptations that led to such unprece-
dented ecological success of a microbial clade characterized by highly conserved en-
ergy and carbon metabolisms have, however, remained underexplored. Here, we re-
constructed the genomic content and growth temperature of the ancestor of all
AOA, as well as the ancestors of the marine and soil lineages, based on 39 available
complete or nearly complete genomes of AOA. Our evolutionary scenario depicts an
extremely thermophilic, autotrophic, aerobic ancestor from which three independent
lineages of a marine and two terrestrial groups radiated into moderate environ-
ments. Their emergence was paralleled by (i) a continuous acquisition of an exten-
sive collection of stress tolerance genes mostly involved in redox maintenance and
oxygen detoxification, (ii) an expansion of regulatory capacities in transcription
and central metabolic functions, and (iii) an extended repertoire of cell appendages
and modifications related to adherence and interactions with the environment. Our
analysis provides insights into the evolutionary transitions and key processes that
enabled the conquest of the diverse environments in which contemporary AOA are
found.

KEYWORDS type IV pili, catalase, aconitase, Archaea, ammonia oxidizing archaea,
reactive oxygen species, evolution, stress adaptation

Ammonia-oxidizing archaea of the phylum Thaumarchaeota have a very broad
ecological distribution on Earth and are key players in the global nitrogen cycle.

They are generally found in studies of aerobic environments as a stable part of the
microbial community, including in soils, ocean waters, marine sediments, freshwater
environments, hot springs, plants, and animals, including humans (1–3). This distribu-
tion is particularly impressive considering that even though the domain Archaea
includes a large variety of energy and central carbon metabolisms (4), no other lineage
is known so far to be represented this widely in oxic environments. Other widespread
functional guilds of archaea are mostly confined to anoxic environments and include
methanogenic archaea (classes I and II) and potentially also the so-far-uncultivated
archaea of the novel lineages Bathyarchaeota and Verstraetearchaeota, as well as
possibly some lineages of the Asgard and DPANN superphyla (5–9).

In contrast to methanogens, AOA form a monophyletic lineage now classified as
Nitrososphaeria within the phylum Thaumarchaeota (10). Based on environmental
studies and genomic data, this taxon comprises thermophilic species growing at
around 70°C (11–13), but most cultivated organisms stem from ocean waters and soils
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(1–3, 14). Phylogenetic and phylogenomic studies have shown that the thermophilic
group of “Candidatus Nitrosocaldales” from hot springs forms a sister group to all AOA
adapted to lower temperatures (11–13). The latter are split into two major lineages, one
of which encompasses the order Nitrososphaerales, with cultivated (and noncultivated)
representatives residing mostly in soils (15). The second major clade is further divided
into the orders “Candidatus Nitrosotaleales,” the members of which are mostly found in
acidic soils, and the large group of “Candidatus Nitrosopumilales,” the members of
which are mostly found in marine environments (16, 17). Several cultivated species of
AOA have greatly contributed to a better understanding of their physiology and have
revealed that AOA, unlike their bacterial counterparts, are adapted to far lower ammo-
nia concentrations (18), which might explain their ecological success in so many
oligotrophic environments. However, a recent meta-analysis based on more than
30,000 amoA genes deposited in public databases revealed that the cultivated strains
and enrichments represent only 7 out of 19 total AOA clades, indicating that the
(eco)physiological potential of AOA could be far greater than assumed (14). Neverthe-
less, genomes of cultivated species from diverse environments and a large number of
fully or partially assembled (meta)genomes of AOA are now available and reveal a very
well-conserved core of energy and carbon metabolism (19, 20), with ammonia oxida-
tion catalyzed by an ammonia monooxygenase (AMO) and CO2 fixed via an extremely
efficient version of the 3-hydroxypropionate/4-hydroxybutyrate pathway (HP/HB) (21).
This finding confirms the general assumption that AOA play an important role in the
global nitrogen cycle, as ammonia oxidation represents the first step of nitrification,
which is an essential process to eventually enable the conversion of reactive nitrogen
species via denitrification into the inert gaseous compound N2, which is then released
to the atmosphere. Their broad occurrence and well-conserved central metabolism, as
well as their monophyly, render AOA an excellent model for elucidating the evolution
and adaptations of a microbial lineage that is very likely to have originated in hot
springs (11, 12, 22–25) and from there successfully radiated, probably between 1 and
2.1 billion years ago (26, 27), into most if not all moderate oxic ecosystems on Earth.

In this work, we have investigated in a robust phylogenetic framework 39 complete
(or nearly complete) genomes from cultivated or environmental strains of AOA that
stem from ocean waters, soils, estuarine, sediments, wastewater, a marine sponge, and
hot springs. This enabled us to reconstruct the optimal growth temperatures and
genome contents of the last common ancestor of all ammonia-oxidizing archaea, as
well as the ancestors of major AOA lineages, to reveal the paths of adaptations that
gave rise to radiations into oxic marine and terrestrial environments, respectively.

RESULTS
A molecular thermometer suggests a thermophilic ancestor for AOA and

subsequent parallel adaptations to mesophily. We compiled a 76-genome data set
comprising publicly available complete genomes and high-quality metagenome-
assembled genomes (MAGs) or single-cell assembled genomes (SAGs) (see Materials
and Methods for selection criteria) from 39 AOA, 13 non-ammonia-oxidizing Thaumar-
chaeota, 8 Aigarchaeota, 5 Bathyarchaeota, and 11 representative genomes of orders
within Crenarchaeota to serve as outgroups. We built a species tree from the concat-
enation of a selection of 33 protein families that were found in at least 74 out of the
76 genomes to serve as a backbone tree for our ancestral reconstructions of growth
temperature and genome content (see below) (see Materials and Methods and Fig. 1
and Table S1A in the supplemental material).

Our extended tree recovered the major clades of AOA as described previously with
a smaller data set (10), separating all AOA into the following four orders: “Ca. Nitros-
opumilales” from mostly marine environments and sediments and with rather small
genomes (�2 Mbp; Fig. 2), “Ca. Nitrosotaleales” from acidic soils, Nitrososphaerales with
representatives exclusively from soils and sediments and exhibiting genomes of double
the size those in all other groups (around 3 Mbp), and “Ca. Nitrosocaldales” with
organisms exclusively from hot environments (Fig. 1).
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In order to approach the optimal growth temperatures (OGTs) of the ancestor of all
AOA and of ancestors of terrestrial and marine lineages, we used a “molecular ther-
mometer” to perform a linear regression that enabled us to predict the OGTs from the
predicted ancestral 16S rRNA G�C stem compositions as in (29, 30) (see Materials and
Methods, Table S1C, Fig. S1, and Text S1). Not all genomes could be represented, as 20
of them were missing assigned 16S rRNA genes (Table S1A). The OGTs of AOA
decreased along time, from around 76°C for the last common ancestor of AOA
(LACAOA), to 67°C for the common ancestor of the mesophilic clades of AOA (CAMA),
to 64°C and 52°C for the ancestors of Nitrososphaerales and “Ca. Nitrosopumilales” plus
“Ca. Nitrosotaleales” (the ancestor of the latter two is here called “CARA,” for common
ancestor of rod-shaped AOA), respectively (Fig. 2). It thus seems that the ancestors of
the three different major orders of AOA were all thermophilic, and parallel adaptations
to lower temperatures occurred over time in these lineages. Interestingly, the order
Nitrososphaerales, containing moderately thermophilic species like “Ca. Nitrososphaera
gargensis” (OGT � 46°C) and Nitrososphaera viennensis (OGT � 42°C), seemed to have
preserved a relatively high G�C content in their 16S rRNA, especially in the genus
Nitrososphaera (predicted ancestral OGT of 64°C to 68°C), which might result from a
recent or still ongoing adaptation to lower temperatures from thermophilic ancestors.
Based on this analysis, “Ca. Nitrosopumilales” have most drastically adapted to lower

FIG 1 Phylogenetic tree (maximum likelihood) of the 76 genomes analyzed, from the concatenation of 33 conserved protein families that were present in
74 out of our 76-genome data set (see Table S1A in the supplemental material). The Crenarchaeota outgroup (11 genomes) is not displayed here, and
Bathyarchaeota (5 genomes) and Aigarchaeota (8 genomes) are collapsed. Ammonia-oxidizing archaea (AOA) lineages and non-AOA Thaumarchaeota are
represented by differently colored shades, and their isolation sources are displayed with colored boxes. The tree was built with IQ-TREE using the LG�C60�F
model. Supports at nodes are ultrafast bootstrap supports (117).
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temperatures, which is in line with their adaptation to colder, marine environments.
Since we infer an ancestor for all AOA with an OGT around 76°C (73°C to 78°C), we
conclude that the ability to oxidize ammonia for energy acquisition in archaea was
most probably acquired in thermophilic or even hyperthermophilic organisms, as has
been suggested since their discovery and through subsequent findings of deeply
branching thermophilic lineages within Thaumarchaeota and AOA (11–13, 22–25).

Genome dynamics and reconstruction of ancestral AOA genomes reveal dis-
tinct evolutionary paths from thermophilic to moderate AOA lineages. In order to
investigate the evolutionary path of metabolic and adaptive features of AOA, we
reconstructed the gene repertoire of LACAOA and of subsequent ancestors by analyz-
ing the distribution of families of homologous proteins from our 76-genome data set
and inferring their gains and losses along the species tree with a birth-and-death model
for gene family size evolution implemented in the Count program (31) (see Table S2 in
the supplemental material). Our analysis enabled us to reconstruct key ancestral states
on the evolutionary path of AOA (Fig. 1 and 2), such as that of LACAOA; that of CAMA,
the common ancestor of mesophilic AOA (after the divergence of “Ca. Nitrosocaldales”);
that of CARA, the common ancestor of rod-shaped AOA (the common ancestor of “Ca.
Nitrosotaleales” and the mostly marine “Ca. Nitrosopumilales”); and the ancestor of
Nitrososphaerales (encompassing mostly terrestrial lineages), as well as the ancestors of
the genera “Candidatus Nitrosocosmicus” and Nitrososphaera.

We infer that at least 1,265 protein families were present in LACAOA, the ancestor
of AOA. Along the transition from non-AOA to AOA, 289 families were inferred to be
gained and 267 lost (Fig. 1 and 2 and Tables S2 and S3 in the supplemental material).
The huge metabolic transition provoked by the adoption of an ammonia-oxidizing
metabolism corresponded to a slightly increased gain rate for LACAOA (i.e., number
of gain events divided by branch length) compared to that of other Thaumar-
chaeota ancestors (see Fig. S2 in the supplemental material; Wilcoxon signed-rank
test, P value � 0.001), yet the general gain rate trend was consistent with an overall

FIG 2 Reconstruction of optimal growth temperatures (OGTs) and genome repertoires of AOA ancestors. Numbers
of families inferred as having a probability higher than 0.5 to be present, gained, or lost are displayed in circles at
each node symbolizing the corresponding ancestral genomes and their dynamics (see main text). Ancestral OGTs
are displayed at the corresponding nodes (top number) together with their confidence interval (number range
below). As there were no 16S rRNA sequences available for the J079 genomic bin, we could not infer an OGT for
the ancestor of “Candidatus Nitrosocaldales.” The colors of the bubbles represent the transition from hot (red) to
colder (blue) growth temperatures. For each candidate order of AOA, the number of protein families found on
average in their respective genomes is indicated, as well as the average genome size (along with standard
deviations). LACAOA, last common ancestor of AOA; CAMA, common ancestor of mesophilic AOA; CARA, common
ancestor of rod-shaped AOA.
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continuous flux of genes throughout AOA evolution rather than a massive influx of
genes that would have marked the onset of this lineage (Text S1 and Fig. S2).

Despite the streamlined genomes of contemporary “Ca. Nitrosopumilales” (1.6 Mbp
on average) compared to those of Nitrososphaerales (3.0 Mbp on average), their
ancestors had very similar predicted family contents (1,534 and 1,661, respectively)
(Fig. 2 and Table S2). Therefore, most of the differences in genome sizes can be
attributed to the massive gains that occurred rather continuously within Nitrososphae-
rales, with 312 gains by the ancestor of Nitrososphaerales and 595 and 256 gains in the
ancestors of the “Ca. Nitrosocosmicus” clade and Nitrososphaera clade, respectively.
This parallel increase in the genome sizes of the two “soil” clades led to distinct
genomic repertoires and physiologies (see following sections). Our inferences of an-
cestral genome sizes differed from those recently obtained by Hua et al. (22), resulting
in apparent distinct genome dynamics with larger ancestral genomes and more
downstream losses in the latter. The Dollo parsimony used in that study to infer gains
and losses with Count was earlier deemed inappropriate for studying prokaryotic
genomes where lateral gene transfers are common (32). Therefore, this difference in
Count settings is likely to account for the differences observed between the studies.
Furthermore, the probabilistic setting we used in this study, where gains and losses
rates were estimated for each family separately, is likely to be more realistic.

In the following sections, we detail the evolutionary path followed by AOA toward
adaptations to moderate environments, starting by describing the ancestor of all AOA.
In order to confirm the evolutionary scenarios inferred by the Count program, we used
comprehensive phylogenetic reconstructions for approximately 80 crucial families
discussed in the rest of this study (see Table S4 in the supplemental material). This
allowed us to correct—where needed—the evolutionary scenarios inferred by the
program Count, and in some cases to make assumptions on the donating lineage (see
Materials and Methods, Data Set S1, and Table S4).

The last common ancestor of AOA was a thermophilic, autotrophic aerobic
organism. (i) Metabolic acquisitions by LACAOA. As expected, LACAOA acquired the
three genes for the ammonia monooxygenase complex (amoABC) and the fourth
candidate subunit (amoX) (33), the urease gene set, and two urea transporters (SSS and
UT types) (12, 22, 34) and expanded its set of preexisting ammonia (Amt) transporters
(from one to two, as in extant AOA) (Fig. 3 and Table S3 in the supplemental material).
Although the evolutionary history of the archaeal AMO is not trivial to resolve, recent
phylogenetic analyses indicated that it is more closely related to actinobacterial hy-
drocarbon monooxygenases than to the bacterial AMO (14). It should also be noted
that none of the non-AOA thaumarchaeal genomes to date encode any genes related
to ammonia oxidation or urea utilization. However, one has to note that the pathway
has not been fully elucidated yet. Meanwhile, a number of cupredoxin domain families
were acquired, equipping it with the unique copper-reliant biochemistry encountered
in contemporary AOA. The heavy reliance on copper necessitated the acquisition of
copper uptake systems, such as the CopC/CopD family proteins (35). Curiously, gluta-
mate synthase (GOGAT), which in most archaea participates in the high-affinity ammo-
nia assimilation pathway, is inferred to be lost at this stage, leaving the glutamate
dehydrogenase (usually exhibiting lower affinity [36]) as the primary ammonia assim-
ilation route in contemporary AOA. This could be regarded as an adaptation to an
energy- and carbon-limited lifestyle, as less carbon and ATP are consumed during NH3

assimilation. It is also the preferred strategy under these conditions in some bacteria
(37).

Similarly, at least two genes for crucial steps in the 3-hydroxypropionate/4-
hydroxybutyrate (HP/HB) CO2 fixation pathway conserved in all AOA were acquired by
LACAOA. These were an ADP-forming 3-hydroxypropionyl-coenzyme A (CoA) synthe-
tase (hpcs), responsible for the energy efficiency of the cycle (21), possibly acquired
from Euryarchaeota (Data Set S1), and methylmalonyl-CoA epimerase (mce). A third
component of the pathway, the ADP-forming 4-hydroxybutyryl-CoA synthetase, was
replaced at the stage of mesophilic AOA (i.e., in CAMA). LACAOA might also have newly
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acquired the O2-tolerant enzyme 4-hydroxybutyryl-CoA dehydratase (see also Fig. S2 in
reference 12). Overall, the carbon fixation pathway found in extant AOA seems to be
the result of the integration of primarily vertically inherited and some more recently
acquired enzymes.

The key enzyme for production of polyhydroxyalkanoates (PHAs), PHA synthase, was
also acquired by LACAOA (Table S2, Table S3, and Data Set S1), equipping AOA with the
ability to produce carbon storage compounds typically synthesized in response to
unbalanced growth conditions (38). Additionally, LACAOA acquired the families asso-
ciated with the biosynthesis of the vitamin B cofactors cobalamin (B12), biotin (B7), and
riboflavin (B2), as pointed out in earlier studies (27, 39).

(ii) Genes for aerobic autotrophic growth were already present in LACAOA. The
gene families inferred to be present already and not gained by LACAOA (labeled with
light and dark gray in Fig. 3) illustrate the genetic background of the archaeon which
first acquired the metabolism of ammonia oxidation (Tables S2 and S3). The ancestor
of LACAOA was capable of using O2 as an electron acceptor, as suggested by the

FIG 3 Reconstruction of main metabolic and physiological features and transport capabilities of the last common ancestor of AOA (LACAOA). Metabolic
modules inferred to be vertically inherited are in light gray if present in all currently known extant AOA or in light blue if lost in certain lineages (not core).
Newly acquired capacities that became core components for all extant AOA are depicted in blue, or in turquoise if they were more scattered throughout extant
AOA genomes (not core). Gray arrows indicate reactions for which a candidate enzyme was not identified in LACAOA. Due to the inherent difficulty in
annotation and substrate prediction, transporters were considered part of the core genome if found in all ancestors examined in this study or if a functionally
equivalent family exchange took place in the ancestors, but their distribution in extant genomes was not taken into account. Gradient boxes are used in the
case of multiple families belonging to different categories. Transporters are named according to the TCDB classification (see Table S3 in the supplemental
material) (129), with indicative substrates and directionality of transport. A question mark indicates an unclear family history; see text for details. S*,
organo-sulfur compounds/sulfite/sulfate; Me2�, divalent cations; aa, amino acids; AcnA, AcnA/IRP group aconitase; MCP, methyl-accepting chemotaxis proteins;
Fla, archaeal flagellum (or “archaellum”).
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presence of a heme-copper oxidase (routinely used to infer an aerobic metabolism [22,
40]) and the absence of an alternative electron acceptor. The inference of an aerobic
ancestor stands in contrast to a recent study (27) that concluded LACAOA arose from
an anaerobic ancestor, based on the assumption that all lineages basal to AOA are
anaerobic (i.e., non-AOA Thaumarchaeota, Aigarchaeota and Bathyarchaeota). However,
most Aigarchaeota and at least two non-AOA Thaumarchaeota (BS4 and pSL12) in-
cluded in our data set were predicted to be facultative aerobes—the latter being
recently further supported by a study reporting metagenome-assembled genomes
from the pSL12 lineage with potential for aerobic respiration (22, 41–44). In our
ancestral reconstructions, genes involved in anaerobic metabolisms were inferred as
gains in the respective lineages, such as the codH subunits in the ancestor of Bathy-
archaeota or nitrate reductase and adenylylsulfate reductase families in Thaumar-
chaeota BS4 and DS1. Additionally, the presence of most enzyme families of the HP/HB
carbon fixation pathway (including the key enzymes acetyl-CoA/propionyl-CoA carbox-
ylase and 4-hydroxybutyryl-CoA dehydratase) indicate the potential for autotrophic
growth. They are present in all known AOA and shared with a number of aerobic
Crenarchaeota and Aigarchaeota, albeit with distinct differences (see above and refer-
ences 21, 45, and 46).

Concurrently, we observe a loss of gene families associated with heterotrophic
growth, particularly those involved in glycolysis and connecting pools of C3 and C4

compounds. Among them are two phosphofructokinases, the 2-oxoacid dehydroge-
nase complex (OADHC), and an (abcd)2-type 2-oxoacid:ferredoxin oxidoreductase
(OFOR), while an (ab)2-type OFOR exclusively found in aerobes is retained in LACAOA
and is present in all extant AOA (see Text S1 and Data Set S1). Losses and gene family
contractions (loss of gene copies in an ancestrally multicopy family) were also observed
in families involved in amino acid catabolism, such as the glycine cleavage system and
amino acid and sugar transporter families (see Text S1 for details).

Overall, our analysis depicts an autotrophic aerobic ancestor, which accompanied
the switch to ammonia oxidation with an apparent minimization of the ability to grow
heterotrophically. Whether this ability was completely lost in the emerging AOA
lineages remains an open question, as many genomic studies have indicated the
potential for mixotrophic growth and many isolates benefit from the addition of
organics (although this effect was later attributed to ROS detoxification [47]). Never-
theless, assimilation of organic carbon has so far not been demonstrated in AOA.

Radiations to moderate environments were paralleled by independent adap-
tations in three major functional categories. In accordance with an inferred adap-
tation to lower temperatures, several traits involved in the thermophilic lifestyle of
LACAOA were lost in subsequent evolutionary steps, namely, reverse gyrase, the
hallmark enzyme of organisms living at extremely high temperatures (48, 49), and the
thermoprotectant cyclic 2,3-diphosphoglycerate (cDPG) (50) synthetase were lost in
CAMA, while the thermoprotectant mannosyl-3-phosphoglycerate synthase (MPGS)
was lost in CARA (Tables S2 and S3 and Fig. 4). In contrast, a homologue of the “cold
shock protein” CspA (51) was found to be acquired from bacteria in an ancestor of “Ca.
Nitrosopumilales” (with the exception of the soil-residing genus “Candidatus Nitrosot-
enuis”) (Fig. 4 and Fig. S3 and Table S2 in the supplemental material, corroborating the
generally lower OGT of the marine lineages, as inferred by our analysis and existing
pure cultures.

When surveying the functions of families acquired and lost along the evolution of
mesophilic AOA, we observed that the majority of acquisitions in all examined ances-
tors, ranging from 18 to 34% of all functionally annotated families (and a few key
losses), could be classified into the following three major categories, discussed further
below: (i) adaptations to various kinds of abiotic stress, particularly oxygen-related
stress, (ii) specific metabolic regulations and general increase of the regulatory poten-
tial, and (iii) extension of capacities to engage in complex interactions with the
environment (Fig. 4, Fig. S3, Table S3, and Text S1).
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Stress adaptations were crucial to colonize “moderate environments.” (i) Strat-
egies against oxidative and nitrosative stress. Although LACAOA, being an aerobe,
was already equipped with a set of proteins dedicated to reactive oxygen species (ROS)
detoxification, redox homeostasis and ROS damage repair (Fig. 3 and Tables S2 and S3),

FIG 4 Summary of crucial gene gains and losses in ancestors of AOA and subsequently evolved lineages. The evolutionary events (gains/expansions in
bold/normal black type, respectively, and losses/contractions in bold italic/italic gray type, respectively) related to each category are displayed next to the
corresponding symbol. Ancestral cells inferred to have been flagellated harbor a schematic flagellum and chemotaxis receptors. For discussion of functions
see the main text and Table S3 and Text S1 in the supplemental material). Gene names and other abbreviations: acnA, AcnA/IRP type aconitase; mAcn,
mitochondrial-like aconitase; ahp, alkyl hydroperoxide reductase; ca, carbonic anhydrase; cat, catalase; cDPG, cyclic 2,3-diphosphoglycerate synthetase; cofG/H, FO
synthase subunits 1/2; copZ, copper binding protein; copC/D, copper resistance family proteins; csd/iscS, cysteine desulfurase families; csp, four-helix bundle copper
storage protein; dps, DNA protection during starvation family protein; dsbA/D, disulfide bond oxidoreductase A/D; dyp, dyp-type peroxidase; EPS, extracellular
polymeric substances synthesis families; fqr, F420H(2)-dependent quinone reductase; fno, F420H2:NADP oxidoreductase; fnr, flavodoxin reductase (ferredoxin-NADPH
reductase); fprA/norV, flavorubredoxin; ftn, ferritin-like protein; gloA/B, glyoxalase I/II; GOGAT, glutamate synthase; grx, glutaredoxin; gshA, glutamate-cysteine ligase;
gsv, gas vesicle formation genes; herA, HR helicase; hjc, Holliday junction resolvase; lea14-like, LEA14-like desiccation related protein; llht, luciferase-like hydride
transferase; mpgs, mannosyl-3-phosphoglycerate synthase; mscL/S, large- and small-conductance mechanosensitive channel, respectively; msrA/B, methionine
sulfoxide reductase A/B; mut-L, putative DNA mismatch repair enzyme MutL-like; NHEJ, nonhomologous end joining; nurA, HR nuclease; OFOR, 2-oxoacid:ferredoxin
oxidoreductase; OsmC, peroxiredoxin; P450, cytochrome p450-domain protein; phaC/E, poly(R)-hydroxyalkanoic acid synthase subunits C/E; phr, photolyase; ppi,
peptidylprolyl isomerase; polY/X, DNA repair polymerases Y and X; ProP (proline/glycine-betaine):(H�/Na�) symporter; radA/B, DNA repair and recombination proteins;
rgy, reverse gyrase; tbp, TATA box binding protein; tfb, transcription initiation factor TFIIB homolog; trxA, thioredoxin; trxB, thioredoxin reductase; wrbA, multimeric
flavodoxin WrbA; dnaJ/dnaK/grpE/dnaJ-ferredoxin, chaperones; uspA, universal stress protein family A; uvrABC/uvdE, UV radiation repair excinuclease ABC system/UV
damage endonuclease uvdE; xpb/bax1, NER helicase/nuclease pair; xpd, NER helicase.
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a number of additional genes involved in these processes were frequently and con-
tinuously acquired along all lines of AOA evolution. Some of these specific acquisitions
also shaped in distinct ways the genomic repertoire of entire clades, determining their
ecological boundaries.

Thiol oxidoreductases of the thioredoxin (Trx) and disulfide bond reductase (Dsb)
protein families, involved in reducing oxidized cysteine pairs (52) were continuously
acquired throughout all AOA lineages (Fig. 4, Fig. S3, and Text S1), while the methionine
sulfoxide reductase B (MsrB) family, which is responsible for the reduction of oxidized
methionines, was expanded only in Nitrososphaerales. Thioredoxin reductase and MsrA
families were present in LACAOA and were inferred to be vertically inherited. Dsb and
Msr family proteins may also be involved in detoxification of reactive nitrogen species
(RNS), such as NO (53, 54), produced by AOA (as in other ammonia-oxidizing bacteria)
as an intermediate of ammonia oxidation (55–57).

Interestingly, only the ancestor of Nitrososphaerales acquired a manganese catalase,
apparently from Terrabacteria (as suggested by phylogenetic analyses; see Table S5 and
Data Set S1), which was lost in N. viennensis), whereas “Ca. Nitrosopumilales,” “Ca.
Nitrosocaldales,” and “Ca. Nitrosotaleales” all lack this enzyme, which is considered to
be a hallmark enzyme for aerobic metabolisms (Fig. 5 and Fig. S3). Although this
absence remains puzzling, in bacteria catalases are the primary scavengers only at high
H2O2 concentrations, while the activity of alkyl hydroperoxide reductase (Ahp, an
enzyme present in LACAOA and vertically inherited in all extant AOA) is sufficient
during logarithmic growth (58). Nevertheless, most AOA species lacking catalase have
been shown to be dependent on, or stimulated by, the presence of an external H2O2

scavenger, such as catalase, dimethylthiourea, or �-ketoacids (47, 59), or were/are
dependent on cocultures with bacteria (60, 61). Stress reduction is a known factor that
shapes microbial communities (62), and these interdependencies are often the reason
behind the low success rates in isolating and characterizing novel species, as is the case
with AOA.

The role of low-molecular-weight thiols (LMWT) in intracellular redox control and
oxidative stress defense is undisputed (63). While the most well-known LMWT, gluta-
thione, has not been detected in archaea, they have nevertheless been shown to
accumulate a variety of analogs such as thiosulfate and coenzyme A (64). The key
genes (egtB and egtD) for the synthesis of the LMTW ergothioneine (EGT), a histidine
betaine derivative with a thiol group synthesized by fungi and bacteria, were
gained in LACAOA (Fig. 4 and Table S2). In other archaeal phyla, they are only found
in a few representatives of Methanosarcinales and Thermoplasmatales. A donor
could not be identified, but the origin of the genes possibly lies within the
Actinobacteria (65).

Another notable acquisition by the ancestor of Nitrososphaerales is the protein
family encoding a gamma-glutamylcysteine ligase (gshA), the evolutionary origin of
which could not be unambiguously traced. This enzyme catalyzes the formation of
gamma-glutamylcysteine from glutamate and cysteine, typically a precursor of gluta-
thione biosynthesis in bacteria and eukaryotes (66). Accumulation of this compound
was shown in Haloarchaea (67, 68), making Nitrososphaerales the second archaeal
group to follow this strategy. The second enzyme responsible for glutathione biosyn-
thesis, GshB, is missing in both Haloarchaea and Thaumarchaeota, while candidates for
a putative bis-gamma-glutamylcystine reductase can be found among the pyridine
nucleotide-disulfide reductase family homologs present in all AOA.

(ii) Iron, copper, and redox homeostasis. Systems that control the levels of
unincorporated iron and copper in the cell are upregulated upon oxidative stress in
archaea and bacteria (69) (Text S1). Both Fe2� and Cu(I) can react with H2O2 and
generate hydroxyl radicals (HO·) via the Fenton and Haber-Weiss reactions, respectively
(70), which can subsequently cause severe cellular damage, including DNA lesions. Dps
family proteins (DNA-binding proteins from starved cells), known archaeal antioxidants
that consume both substrates of the Fenton reaction and physically shield the DNA (69,
71), were acquired by LACAOA and expanded in Nitrososphaerales. Dps and ferritin-like
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superfamily proteins were also gained as part of the parallel expansion of the soil
lineages in the “Ca. Nitrosocosmicus” and Nitrososphaera ancestors (Fig. 4 and Fig. S3).
Cu(I) can also cause the displacement of iron in enzymatic Fe-S clusters (72). Interest-
ingly, a Cys-rich four-helix bundle copper storage protein (Csp), recently identified in
methanotrophs (73), was acquired in the ancestor of Nitrososphaerales, probably from
bacteria (Data Set S1).

Enzymes involved in maintaining redox homeostasis, an essential function to pre-
vent or alleviate oxidative stress, were gained throughout the evolution of AOA. In
particular, a ferredoxin:NADP(H) oxidoreductase (FNR) family was gained by LACAOA
and expanded in CAMA, while WrbA flavodoxins were acquired by CARA, the ancestor
of “Ca. Nitrosopumilales,” the ancestor of Nitrososphaerales, and the subsequent ter-
restrial lineages (Fig. 4, Table S3, Fig. S3, and Text S1).

(iii) Frequent exchanges of pathways involved in desiccation, protein stability,
and osmotic stress relief occurred during the colonization of osmotically variable
environments. LACAOA acquired the key enzyme mannosyl-3-phospholgycerate syn-
thase (MPGS) (Data Set S1), responsible for the first of the two-step synthesis pathway

FIG 5 (A) Phylogenetic tree of the catalase family. A maximum-likelihood phylogenetic tree was obtained for the corresponding protein family, FAM002068
(Tables S2 and S3). AOA sequences are shown in green and bacterial ones are in black. Archaeal clades are indicated in bold font. (B) Phylogenetic tree of the
aconitase family. A maximum-likelihood phylogenetic tree was obtained for the corresponding protein family, FAM001301. AOA sequences are shown in green
and eukaryotic ones in blue. Gray triangles correspond to collapsed groups of archaeal and bacterial aconitases. In both panels, branches with UFBoot support
above 95% are indicated by a red circle.
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of the compatible solute mannosylglycerate (MG), whose role beyond osmotic stress
involves maintenance of protein structure and activity during freezing, desiccation, ROS
detox, and thermal denaturation (74, 75). Interestingly, the pathway for MG synthesis
was lost in CARA. The emerging, mostly marine lineages instead acquired the ability
to synthesize or take up ectoine/hydroxyectoine (gained by the ancestor of the
Nitrosopumilus genus [76]) and proline/glycine-betaine (gained in CARA) during the
adaptation to osmotically variable (e.g., estuarine) and high salinity (e.g., open
ocean) environments (see Fig. 4, Text S1, and Fig. S3). Additional small-conductance
mechanosensitive channel families (MscS) enabling the rapid outflux of solutes in
response to excessive turgor caused by hypoosmotic shock (77) were acquired in CARA
and subsequent lineages, while the large-conductance MscL was lost in marine lineages
adapted to high salinity, as is frequently the case in marine-dwelling bacteria (77)
(Table S3).

LEA14-like protein families containing a conserved WHy (water stress and hyper-
sensitive response) domain (78) were acquired in LACAOA, in CARA, and repeatedly
during AOA diversification, ending up with multiple copies in extant genomes (Fig. 4,
Fig. S3, Tables S2 and S3, and Data Set S1), thus equipping AOA with proteins that act
as “molecular shields,” preventing denaturation and inactivation of cellular components
under conditions of osmotic imbalance.

(iv) Gain of common and rare DNA repair systems in mesophilic AOA. Oxidative
DNA lesions are hypothesized to be the primary source of DNA damage in oxic habitats,
and LACAOA was already equipped with the basic components of most DNA repair
systems. Interestingly, the bacterial-type UvrABC system common in mesophilic and
thermophilic bacteria (79) but not found in the hyperthermophilic AOA ancestors or in
non-AOA Thaumarchaeota was acquired by CAMA, possibly from bacteria or by mul-
tiple transfers from bacteria first to other archaeal clades (methanogens, halophiles, and
the lineages comprising the TACK superphylum, i.e., Thaumarchaeota, Aigarchaeota,
Crenarchaeota, and Korarchaeota) and then to AOA (Data Set S1). Genetic exchanges
continued to shape the DNA repair arsenal of the different thaumarchaeal lineages
(Fig. 4, Fig. S3, and Text S1). In particular, an impressive inflow of DNA repair families
took place into the ancestor of Nitrososphaerales with the acquisition of a complete
nonhomologous end joining (NHEJ) complex from bacteria (Data Set S1), while a UvdE
endonuclease family involved in the alternate UV damage repair pathway (UVDR) was
acquired in “Ca. Nitrosocosmicus.” The former is extremely rare in archaea (80), with a
full complex described so far only from Methanocella paludicola (81).

Expansion of transcriptional and redox-based metabolic regulation. An intrigu-
ing enzyme family exchange took place in CAMA, the last common ancestor of all
mesophilic AOA, in which the AcnA/IRP-type aconitase, present in “Ca. Nitrosocaldus”
genomes, other archaea, the eukaryotic cytosol, and most bacteria, was exchanged for
a mitochondrial-like aconitase (mAcn) present in eukaryotic mitochondria, Bacteroides
(as previously observed [82]), and only a few other lineages of bacteria (Spirochaetes,
Fibrobacteres, Deltaproteobacteria, and Nitrospirae; Fig. 5 and Data Set S1). The key to
this exchange may lie in the differential sensitivity and recovery rate of these Acn types
to oxidative inactivation of their Fe-S clusters. While the AcnA/IRP group aconitases are
more resistant to oxidative damage and are implicated in oxidative stress responses,
their repair is slower, as it might require complete cluster disassembly (83). On the other
hand, the eukaryotic mAcn and bacterial AcnB aconitases, although distantly related,
are easily inactivated by ROS but can be readily reactivated when iron homeostasis is
restored (83, 84). This makes them the enzymes of choice for aerobic respiration in
eukaryotes and some bacteria, as it provides a sophisticated redox regulation mecha-
nism of the central carbon metabolism (85–87). Interestingly, two non-AOA Thaumar-
chaeota genome bins from oceans, likely to be from mesophilic organisms as well, also
harbor this mitochondrial-like version of the aconitase, while a replacement has taken
place in the moderate thermophile “Ca. N. gargensis” (Fig. 5). To our knowledge, this is
the first observation of a mitochondrial-type aconitase in the Archaea, which can be
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interpreted as a clearly beneficial, perhaps crucial, adaptation to an increasingly oxic
environment, although this remains to be experimentally validated.

The two basic transcription factors of Archaea (TFB and TBP), which are homologs of
the eukaryotic TBP and TFIID, are found in extended numbers in AOA (as noted earlier
for smaller data sets [88, 89]) (Fig. S3). Our ancestral reconstructions, supported by
phylogenetic trees, indicate that LACAOA already encoded multiple TFB copies (prob-
ably around three), and extant mesophilic AOA genomes encode 4 to 11 copies.
Interestingly, TBP expansions occurred in CARA, with extant genomes encoding 2 to 5
copies (Fig. 4, Table S2, and Fig. S3). These expansions enabled multiple potential
combinations of TFBs and TBPs, resulting in the emergence of global regulatory
networks and rapid physiological adaptation in changing environments, as noted
earlier for halophilic archaea and AOA (90–92).

Interactions with the environment: extracellular structures and cell wall mod-
ifications. A variety of enzymes involved in acetamidosugar biosynthesis, exopolysac-
charide (EPS) production, cell envelope biogenesis, and adhesion were gained by every
ancestor we reconstructed, with an apparent enhancement of the process in Ni-
trososphaerales (Fig. 4 and Tables S2 and S3), reflecting their demonstrated ability to
form biofilms (19, 93). Formation of single- or multispecies biofilms is an understudied
but very successful ecological adaptation in Archaea (reviewed in reference 94), as
these structures not only offer protection against environmental stress and nutrient
limitation (95, 96), but can also provide favorable conditions for direct nutrient or
electron exchange that facilitate biogeochemical cycling.

Cellular structures play crucial roles in biofilm formation, motility, and in mediating
various forms of environmental and cell-cell interactions. Our analysis indicates that at
least four different types of archaeal type IV pilus (T4P) have been gained along AOA
diversification (Fig. 6 and Text S1), and were sometimes subsequently lost, leading to
a complex distribution pattern (Fig. S4). The AOA ancestor already possessed at least
one T4P, as indicated by the families inferred to be present and acquired (T4P
biosynthesis and chemotaxis genes). AOA possess the archaeal flagellum (“archaellum”)
(97), a pilus of unknown function related to Ups and Bas pili (involved in cell-cell
contact and DNA repair and sugar metabolism, respectively, in Sulfolobales) (98, 99), as
well as two other adhesion-like pili that could play a role in biofilm formation or biotic
interactions (Fig. 6) (12, 100). Interestingly, “Ca. Nitrosocosmicus spp.” did not harbor
any T4P, unlike the soil-associated sister group Nitrososphaera, suggesting a different
adaptive strategy to terrestrial environments, as pointed out by a number of differential
gains/losses in the two lineages (see above). The precise functions of these four pili
remain to be elucidated, but their abundance and diversity indicate frequent and varied
environmental interactions and exchanges across AOA. Such a level of diversity in the
pili repertoire of AOA even exceeds the diversity observed in Sulfolobales, and it is only
paralleled by the diversity we find here in Bathyarchaeota (Fig. 6).

DISCUSSION

Our analysis highlights the many obstacles that AOA might have endured in the
course of their diversification and adaptation from hot to moderate temperature
environments.

Overall, a continuous acquisition of crucial components, many of which are impli-
cated in coping with stress derived from oxygen exposure, seems to have been the key
to the ecological success in the different lineages of AOA. We assume that the higher
solubility of oxygen at lower temperatures (which is about 4-fold when shifting from
80°C to 20°C), together with a metabolic optimization resulting in higher production of
ROS and possibly reactive nitrogen species through ammonia oxidation, might have
necessitated these extensive adaptations. In summary, we observe a higher proportion
of families implicated in oxygen tolerance compared to thermophilic sister lineages in
our data set (Aigarchaeota, Crenarchaeota, and some non-AOA Thaumarchaeota)
(Fig. S3 and Table S3 in the supplemental material). In addition, moderate habitats are
discontinuous and unstable in terms of nutrient availability, hydration content, and
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radiation exposure, in drastically different ways than a hot spring. This is reflected in
regulatory adaptations in nonthermophilic AOA, including the acquisition of the reg-
ulatable mitochondrial-type aconitase in the common mesophilic ancestor (CAMA),
that is found in every mesophilic AOA to date, as well as a considerable expansion of
basic transcription factors in all AOA lineages. Third, AOA had to cope increasingly with
competition at lower temperatures resulting from higher overall microbial diversity and
abundance, which might have triggered their diversification of the outer cell wall and
the acquisition of different kinds of type IV pili in most lineages.

The specific differences in adaptations along the evolutionary lineages of marine
AOA (“Ca. Nitrosopumilales”) and the two divergently evolved terrestrial lineages (“Ca.
Nitrosocosmicus” and Nitrososphaera) reflect their current major ecological distribution.
While the ancestors of “Ca. Nitrosopumilales” acquired strategies to cope with higher
osmotic pressures and lower temperatures in the ocean, the ancestor of the terrestrial
group (Nitrososphaerales) acquired a range of families to cope with oxygen, fluctuating
nutrient availability, and other stressors, as well as with DNA damage, while it diversi-
fied its cell wall modifications and EPS-forming capacities.

FIG 6 Phylogenetic tree of the type IV pilus ATPase family and genetic structure of AOA pili. A maximum-likelihood phylogenetic tree was obtained for the
T4P ATPase in AOA (FAM001536) and representative genomes of other Archaea. Four distinct types of T4P are found in AOA (green branches). Clades other
than AOA and non-AOA Thaumarchaeota (blue branches) were collapsed and colored by taxonomy. Annotations are based on the position of experimentally
validated pili (archaeal flagellum/archaellum, Aap, Ups, and Bas pili); otherwise, the generic term “pilus” was used. The genetic architecture of the different
types of T4P found in AOA is displayed in green boxes in front of their corresponding position in the ATPase tree. Branches with UFBoot support above 95%
are indicated by a red circle. See also Fig. S4 in the supplemental material for the precise genomic distribution within AOA of these different pili.
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The path of AOA into moderate environments looks similar to that of halophilic
Archaea, where continuous acquisitions of bacterial genes (to Haloarchaea) seem to
have contributed to a metabolic switch from anaerobic methanogenic autotrophy to
heterotrophy and aerobic respiration, as well as to osmotic adaptations (91, 101–103).
These gradual adaptations contradict the earlier idea of massive lateral gene transfers
at the onset of major archaeal clades (91, 101–103) (see also below). Furthermore, we
see clear parallels between halophilic Archaea and AOA with respect to their stress
adaptations, especially regarding oxidative stress (this study, and references 91, 101,
and 104) and both lineages also have expanded sets of basic transcription factors,
indicating the possibility of building complex regulatory networks (92).

Besides Thaumarchaeota and Halobacteria, “Candidatus Posidoniales” (formerly ma-
rine group II archaea) and class II methanogens (Methanomicrobia) thrive in oxic
habitats (40, 105, 106). Although they are strictly anaerobic, the latter show particular
adaptations in the methanogenesis pathway that result in decreased ROS production,
together with an enrichment in protein families involved in ROS detoxification and
DNA/protein repair (106), i.e., similar to adaptations outlined here for AOA but to a
smaller extent.

While we agree that exposure to oxygen was a driving evolutionary pressure, we
depict here a more complex scenario for adaptation of AOA to moderate environments
than that described in a recent study (27). We show that adaptation to higher levels of
oxygen occurred in addition to adaptations to various types of stress and that these
occurred gradually, involving both innovations and preexisting ancestral sets of genes.
In contrast to Ren et al. (27), we infer an already aerobic ancestor for all AOA, which is
in agreement with sister lineages to AOA being at least facultative aerobes (Bathyar-
chaeota, Aigarchaeota, and non-AOA Thaumarchaeota). This is also in line with a more
recent diversification of AOA than that suggested by the use of molecular clock in Ren
et al. (27). The diversification of mesophilic AOA (CAMA) has indeed been estimated to
begin no earlier than 950 million years based on the acquisition of the fused version of
DnaJ-ferredoxin genes from the ancestor of Viridiplantae (some time between 750 and
950 million years ago) (26), an acquisition which we could confirm with our compre-
hensive genomic data set (Fig. 4, DnaJ-Fd). LACAOA, and at least major mesophilic
lineages of AOA, might thus have diversified well after the Great Oxidation Event
2.3 billion years ago.

Although the phylogenetic trees we obtained could support Count scenarios and
clarify at what point a given family was acquired, in many cases they could not help to
identify the donor lineage. This is consistent with another recent study (27), and this
inability to precisely identify donors persists in spite of the huge increase in taxon
sampling since the first studies of lateral gene transfers in Thaumarchaeota (23, 107,
108). It may not only be caused by limited taxon sampling but could also result from
shifts in evolutionary rates of the acquired families and the resulting difficulties in
solving the gene phylogenies. It is, however, clear that a mix of preadaptations (vertical
inheritance) and transfers of both bacterial and archaeal genes together fell into place
to allow the successful radiation of ammonia-oxidizing archaea into so many different
environments. The complexity of this “genetic cocktail” could explain why the ecolog-
ical success seen for AOA appears to be unique in the domain Archaea.

MATERIALS AND METHODS
Genome data set. We gathered complete genomes of AOA, and enriched the data set with complete

or metagenome-/single-cell-assembled genomes of high quality. We used CheckM (version 1.0.7) (109)
to assess the completeness and contamination of the genomes gathered (“lineage_wf” parameter) and
used a �80% completeness and �5% contamination threshold to include MAGs or SAGs. However, these
criteria were sometimes relaxed in order to broaden the phylogenetic diversity included (see Table S1A
in the supplemental material). In total, we selected 76 genomes for the analysis, including 39 AOA, 13
non-AOA Thaumarchaeota, 8 Aigarchaeota, 5 Bathyarchaeota, and 11 Crenarchaeota (Table S1A). When
no annotations were available for the selected genomes, the Prokka suite (v1.12) (110) was used to
annotate genes and proteins.

Protein family construction. Protein families were built for the set of genomes selected. A BLAST
search of “all sequences against all” was performed, and the sequences representing hits with an E value
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below 10�4 were used as input for the SiLiX (v1.2.11) and HiFiX (v1.0.6) programs to cluster the sets of
similar sequences into families (111, 112). Two sequences were clustered in the same SiLiX family when
they shared at least 35% identity and their BLAST alignment covered at least 70% of the two sequence
lengths. The HiFiX program was then used on the SiLiX families for refinement. We obtained 37,517
familie, indicated throughout the text and supplementary tables as FAMXXXXXX, of which 12,367 had
more than one sequence.

Phylogenomic tree inference. Universal archaeal families described by Rinke et al. (113) were
annotated in our genome data set using HMMER (v3.1b2) (114) as described previously (12). The best hit
was selected in each genome, and a subset of 33 informational protein families that were present in 74
out of 76 genomes of our data set was selected. The sequences from each family were extracted and
aligned using MAFFT (linsi algorithm, v7.313) (115), and the alignments were filtered using BMGE
(BLOSUM30, v1.12) (116). The filtered alignments were then concatenated, a maximum-likelihood tree
was inferred with IQ-TREE (v1.6.11) using the LG�C60�F model of sequence evolution, and 1,000
ultrafast bootstraps were performed (117).

The 33 families, given with Pfam identifiers, were as follows: PF00177 ribosomal protein S7p/S5e,
PF00189 ribosomal protein S3, PF00203 ribosomal protein S19, PF00237 ribosomal protein L22p/L17e,
PF00238 ribosomal protein L14p/L23e, PF00252 ribosomal protein L16p/L10e, PF00276 ribosomal pro-
tein L23, PF00347 ribosomal protein L6, PF00366 ribosomal protein S17, PF00380 ribosomal protein
S9/S16, PF00410 ribosomal protein S8, PF00411 ribosomal protein S11, PF00416 ribosomal protein S13/S18,
PF00466 ribosomal protein L10, PF00572 ribosomal protein L13, PF00573 ribosomal protein L4/L1 family,
PF00673 ribosomal L5P family, PF00687 ribosomal protein L1p/L10e family, PF00831 ribosomal L29
protein, PF01090 ribosomal protein S19e, PF01157 ribosomal protein L21e, PF01200 ribosomal protein
S28e, PF01201 ribosomal protein S8e, PF01280 ribosomal protein L19e, PF01667 ribosomal protein S27,
PF01000 RNA polymerase Rpb3/RpoA insert domain, PF01191 RNA polymerase Rpb5, C-terminal domain,
PF01192 RNA polymerase Rpb6, PF01912 eIF-6 family, PF09173 initiation factor eIF2 gamma, PF03439
early transcription elongation factor of RNA pol II, PF04406 type IIB DNA topoisomerase, and PF11987
translation-initiation factor 2.

Inference of ancestral optimal growth temperature. A data set of 16S rRNA sequences and
corresponding OGTs was extracted from Eme et al. (25) and from the literature (Table S1C). The stem
position predictions were obtained from the RNA STRAND database (v2.0) for all the sequences in our
data set that were available (20 rRNA molecules). The 16S rRNA sequences that were available (56 out
of 76 genomes; see Table S1A) were all aligned together with RNA STRAND sequences with SSU-ALIGN
(v0.1.1) (118), and the consensus of the positions found in stems were conservatively selected to be part
of stem regions (878 positions). The GC% of the predicted stems was computed for each sequence. A
linear regression between the stem GC% and the OGT was computed. A nonhomogeneous model
was used in bppml (BppSuite, v2.4.1) (119) to estimate the evolutionary model of the 16S rRNA
sequences along the reference tree, as in (29). The estimated parameters were then used in the
program BppAncestor to reconstruct 100 replicates of ancestral sequences along the reference tree. The
OGT of the ancestor of extant AOA was inferred using the linear regression coefficients and the bootstrap
replicates to estimate a confidence interval, as described in Groussin and Gouy (29).

Count analysis and ancestral genomes reconstruction. A matrix of occurrences of each protein
family in extant genomes was created for all the genomes under analysis. This matrix was used as an
input for the Count program (v10.04) (31) along with the reference phylogeny to compute (i) the rates
of gains and losses along the tree independently for each family given a phylogenetic birth-and-death
model (gain-loss-duplication model, default parameters) and (ii) the posterior probabilities for each
family to have been gained and lost given the inferred rates in each branch of the tree. R (v3.5.1) and
Python (v2.7) scripts were used to analyze and extract the resulting data. Evolutionary events inferred on
each branch of the reference tree (family gains, losses, expansions: number of family members increases;
contractions: number of family members decreases) were selected when their probability was above a
fixed threshold of 0.5. This threshold was also used to define the presence and multicopy state of each
family within each node. The sets of families inferred to be present at a given node constituted the
ancestral genome of the branches emerging from this node. We therefore could extract the sets of
evolutionary events (gains, losses, expansions, and contractions) before a lineage diversification, together
with the families inferred to have been present in the ancestor of the lineage (see Table S2 in the
supplemental material).

Annotation of protein families and quantification of functional categories. Aside from the
annotations provided with the genomes, we obtained annotations using Pfam (v28.0 PFAM-A, “cut-tc”
option, best independent E-value (i-Evalue) match selected with HMMER) (120), TIGRFAM (v15, ”cut-tc”
option, best i-Evalue match) (121) using the corresponding HMM protein profiles and the HMMER
program version 3.1b2 (114). Archaeal clusters of orthologous genes (arCOGs) (2014 version) (122) and
COGs (2014 version) (123) were assigned using the COGnitor scripts, with an E-value threshold set to
10�10. The MacSyFinder program (v1.0.5) (124) was also used to annotate type IV pili in genomes using
models and HMM profiles described earlier (12). Manual inspection of the protein families resulted in
grouping into custom functional categories, which were then quantified in extant genomes as in
Table S3.

Phylogenetic analyses of gained genes. We first gathered a representative data set of 281
genomes from bacteria, archaea, and eukaryotes (see Table S1B). This data set, composed of complete
genomes (NCBI RefSeq database), was selected to cover a vast range of organismal diversity and was
enriched to cover the diversity of organisms from the TACK superphylum by adding 68 highly complete
metagenomic bins (Table S1B).
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For protein families of interest, we retrieved all the sequences classed as part of the family in our 76
genomes data set and used them to query the representative data set of genomes using BLAST (v2.6.0�)
(125). The first 250 sequences corresponding to the best-score hits with an E value lower than 10�10 were
selected. The corresponding sequences were extracted, dereplicated with UCLUST (“-cluster_fast,” 100%
identity level, USEARCH v10.0.240) (126), and aligned to the sequences from the original protein family
using the MAFFT program (linsi algorithm, v7.397) (115). The alignments were then filtered using the
BMGE program (BLOSUM30) (116). The filtered alignments were used to build phylogenetic trees by
maximum-likelihood (IQ-TTREE, “-m TESTNEW,” best evolutionary model selected by Bayesian informa-
tion criterion, 1,000 ultrafast bootstrap and approximate likelihood ratio test [aLRT] replicates) (117).
Upon manual inspection of the trees, a few sequences were excluded during protein family phylogeny
reconstructions when the corresponding branches had a length in the tree of �1 substitutions/site. In
those few cases, alignments and trees were reconstructed without the corresponding sequences. All
resulting trees are provided in Data Set S1, and a list of the generated trees can be found in Table S4 in
the supplemental material.

Generation of figures. Drawings of trees and genes were generated with iTOl (v4) (127) and
GeneSpy (v1.1) (128), respectively.

Data availability. The genomes analyzed in this study are publicly available in NCBI or IMG/JGI
databases, and all accession numbers are given in Table S1A. All data generated in this study are
provided in Tables S1 to S4, and generated phylogenetic trees are in Data Set S1.
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